next up previous contents
Next: Geometric Nonlinearity Up: Two Dimensional Element Mechanics Previous: Strain-Displacement Matrix

Mass Matrix

The consistant mass matrix for plane and axisymmetric curved shells is computed by performing a volume integration over the element domain, as follows

$\displaystyle {\bf M}$=$\displaystyle \int_\Omega \rho \; {\bf A}^T {\bf A}\; d\Omega$(71)
$\displaystyle {\bf A}$=$\displaystyle \left[ {\bf A}_1 \; {\bf A}_2 \; \cdots \right]$(72)
$\displaystyle {\bf A}_i$=$\displaystyle \left[ {\bf N}_i \; {\bf Z}_i \right]$(73)
$\displaystyle {\bf N}_i$=$\displaystyle \left[ \begin{array}{cc}
N_i & 0\\
0 & N_i
\end{array} \right]$(74)
$\displaystyle {\bf Z}_i$=$\displaystyle \eta N_i \frac{t_i}{2} {\bf R}_i$(75)

where the subscript i denotes the node number.



A. Zeiny
2000-09-06