next up previous contents
Next: Strain-Displacement Matrix Up: Two Dimensional Element Mechanics Previous: Geometric Description

Kinematic Description

The kinematics of the plane shell element are defined also by invoking the isoparametric hypothesis which leads to

\begin{displaymath}\left\{\begin{array}{c}
u\\
v
\end{array} \right\} =
\su...
...ay} \right\}
+ \frac{t_i \eta}{2} {\bf R}_i \theta_i
\right]
\end{displaymath}(57)

or concisely

 \begin{displaymath}{\bf u}=\sum_{i=1}^{n} N_i (\xi) \left[ \overline{{\bf u}}_i
+ \frac{t_i \eta}{2} {\bf R}_i \theta_i \right]
\end{displaymath}(58)

where $\overline{u}_{i}$ and $\overline{v}_{i}$ are the middle surface displacements in the X and Y directions at node i, respectively, and ${\bf R}_i$ is the rotation arm vector at node i given by

\begin{displaymath}{\bf R}_i =
\left\{\begin{array}{c}
-v_{2y}\\
v_{2x}
\end{array} \right\}_i
\end{displaymath}(59)



A. Zeiny
2000-09-06