next up previous contents
Next: Kinematic Description Up: Two Dimensional Element Mechanics Previous: Two Dimensional Element Mechanics

Geometric Description

The geometry of a typical plane shell element is also defined using the Cartesian coordinates of the top and bottom surface corresponding to each node, thus

$\displaystyle \left\{\begin{array}{c}
x\\
y
\end{array}\right\}$=$\displaystyle \sum_{i=1}^{n} N_i(\xi)
\left[
\frac{1+\eta}{2}
\left\{\begin{arr...
...c{1-\eta}{2}
\left\{\begin{array}{c}
x_i^b\\
y_i^b
\end{array}\right\}
\right]$(51)
 =$\displaystyle \sum_{i=1}^{n} N_i(\xi)
\left\{\begin{array}{c}
x_i\\
y_i
\end{array}\right\}_\eta$(52)

or consizly as

\begin{displaymath}{\bf x} = \sum_{i=1}^{n} N_i(\xi) {\bf x}_{i \eta}
\end{displaymath}(53)

where the index i refer to the i'th node. In order to construct the Jacobian matrix, the natural coordinate derivatives are obtained as
$\displaystyle \frac{\partial {\bf x}}{\partial \xi}$=$\displaystyle \sum_{i=1}^{n}\frac{\partial N_i(\xi)}{\partial \xi} {\bf x}_{i \eta}$(54)
$\displaystyle \frac{\partial {\bf x}}{\partial \eta}$=$\displaystyle \frac{1}{2}\sum_{i=1}^{n} N_i(\xi) \left[ {\bf x}_i^t - {\bf x}_i^b \right]$(55)

The Jacobian matrix required to transfer derivatives between the global and natural coordinate systems is then given by

\begin{displaymath}{\bf J}= [\frac{\partial {\bf x}}{\partial \xi} \;\; \frac{\partial {\bf x}}{\partial \eta}]^T
\end{displaymath}(56)



A. Zeiny
2000-09-06