next up previous contents
Next: Computer Implementation and Testing Up: Geometric Nonlinearity Previous: Total Lagrangian Description for

Total Lagrangian Description for Two-Dimensional Shells

In case of plane and axisymmetric shells, the formulation is deduced from the three-dimensional shell formulation. The strain vector is given by

$\displaystyle {\mbox{\boldmath$\epsilon$ }}$=$\displaystyle \left\{\begin{array}{c}
\epsilon_{x'}\\
\gamma_{x'y'}\\
\epsilo...
...}\left[\frac{\partial v'}{\partial x'}\right] ^2\\
0\\
0
\end{array} \right\}$(91)
 =$\displaystyle \sum_{i=1}^n \left( {\bf B}_{o} + {\bf B}_{l} \right)_i
\left\{\begin{array}{c}
\overline{{\bf u }}_i \\
\theta_i
\end{array}\right\}$(92)

where $\epsilon_{z'}=0$ in case of plane shell. The nonlinear strain component is rewritten as

\begin{displaymath}\mbox{{\boldmath$\epsilon$ }}_l = \frac{1}{2} \frac{\partial ...
...{array} \right\}
=\frac{1}{2} \epsilon_{c} \left\{ D \right\}
\end{displaymath}(93)

The coupling strain is related to the nodal degrees of freedom by

\begin{displaymath}\epsilon_{c} = \sum_{i=1}^n
\left[\begin{array}{cc}
{\bf G...
...egin{array}{c}
{\bf u}_i \\
\theta_i
\end{array} \right\}
\end{displaymath}(94)

The matrix ${\bf B}_l$ is then given by
$\displaystyle \left[B_l\right]_i$=$\displaystyle \left\{D\right\}_i
\left[\begin{array}{cc}
{\bf G}^u& G^\theta
\end{array} \right]_i$ 
 =$\displaystyle {\bf D}_i \; {\bf G}_i$(95)
$\displaystyle {\bf G}^u$=$\displaystyle \left[ \begin{array}{cc}
0 & \frac{\partial N_i}{\partial x'}
\end{array}\right]
\left [ q \right]$(96)
$\displaystyle G^\theta$=$\displaystyle \frac{t_i}{2}
\left[ \begin{array}{cc}
0 & \frac{ \partial \left(...
...i \right) }{\partial x'}
\end{array}\right]
\left [ q \right]\left\{R_i\right\}$(97)

The stiffness matrix is then given by

\begin{displaymath}\left[ K \right] =\int_{\Omega} \left [ \left[ B_o+B_l \right...
...igma_{x'} \left[ G \right]^T \left[ G \right]
\right] d\Omega
\end{displaymath}(98)


next up previous contents
Next: Computer Implementation and Testing Up: Geometric Nonlinearity Previous: Total Lagrangian Description for
A. Zeiny
2000-09-06