next up previous contents
Next: Kinematic Description Up: Three Dimensional Element Mechanics Previous: Coordinate Systems

Geometric Description

The geometry of a typical three dimensional shell element is defined using the Cartesian coordinates of the top and bottom surfaces corresponding to each node, thus

$\displaystyle \left\{\begin{array}{c}
x\\
y\\
z
\end{array}\right\}$=$\displaystyle \sum_{i=1}^{n} N_i(\xi,\eta)
\left[
\frac{1+\zeta}{2}
\left\{\beg...
...{2}
\left\{\begin{array}{c}
x_i^b\\
y_i^b\\
z_i^b
\end{array}\right\}
\right]$(11)
 =$\displaystyle \sum_{i=1}^{n} N_i(\xi,\eta)
\left\{\begin{array}{c}
x_i\\
y_i\\
z_i
\end{array}\right\}_\zeta$(12)

or consizly as

\begin{displaymath}{\bf x} = \sum_{i=1}^{n} N_i(\xi,\eta) {\bf x}_{i \zeta}
\end{displaymath}(13)

where the index i refer to the i'th node and n is the number of nodes per element. In order to construct the Jacobean matrix, the natural coordinate derivatives are obtained as
$\displaystyle \frac{\partial {\bf x}}{\partial \xi}$=$\displaystyle \sum_{i=1}^{n}\frac{\partial N_i(\xi,\eta)}{\partial \xi} {\bf x}_{i \zeta}$(14)
$\displaystyle \frac{\partial {\bf x}}{\partial \eta}$=$\displaystyle \sum_{i=1}^{n}\frac{\partial N_i(\xi,\eta)}{\partial \eta} {\bf x}_{i \zeta}$(15)
$\displaystyle \frac{\partial {\bf x}}{\partial \zeta}$=$\displaystyle \frac{1}{2}\sum_{i=1}^{n} N_i(\xi,\eta) \left[ {\bf x}_i^t - {\bf x}_i^b \right]$(16)

The Jacobean matrix required to transform derivatives between the global and natural coordinate systems is then given by

\begin{displaymath}{\bf J } = [\frac{\partial {\bf x}}{\partial \xi} \;\; \frac{...
...\partial \eta} \;\;
\frac{\partial {\bf x}}{\partial \zeta}]^T
\end{displaymath}(17)


next up previous contents
Next: Kinematic Description Up: Three Dimensional Element Mechanics Previous: Coordinate Systems
A. Zeiny
2000-09-06