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ABSTRACT 

The product representation for storing design information presented in this paper is based 
on a dynamic object-oriented data model. This model stores design data as they are 
generated during design in a computable format, as well as supports case-based reasoning 
and sharing of data among all design teams. This model represents each entity in the 
product as a generic container that encompasses its form, function, behavior, taxonomy, 
composition and relationships. Different features can be added dynamically to the 
container as needed. The model integrates multiple views of various design teams, 
supports design evolution and exploration, and is extensible. 

 

INTRODUCTION 

The first step necessary in solving a problem with a computer involves the development 
of a representation for the problem (Simon 1996). Hence, the development of any design 
environment requires the definition of a design data model, known as the design 
repository. The product development process has some inherent characteristics that 
impose requirements on such a model. The design of a product requires a team of 
designers from numerous design disciplines, each contributing a particular body of 
knowledge and expertise to the overall effort. A product is considered successful when 
the contributions of the designers and their respective views are integrated into a 
harmonious whole. The product design process produces design information that 
naturally grows in quantity and quality as the design evolves. Thus, data that are only 
outlined in the early stages of design are gradually modified, enhanced, and detailed as 
the design unfolds. The product design process is also exploratory in nature. It is an 
iterative process in which design alternatives are synthesized and analyzed until a 
satisfactory solution emerges (Rivard and Fenves 2000). The relevant features of the 
design problem manifest themselves as the design proceeds and depend on the decisions 
taken. Hence, the product representation should support dynamic changes not just in 
terms of values and instances, but also in terms of model structure (Eastman and 
Fereshetian 1994). The product design process evolves over time with the advent of new 
methods, technologies, requirements, and products. It is impractical to require a design-
information model to be fully defined before implementation. Changes need to occur as a 
result of the following: 

1. Selecting, changing or elaborating the material or fabrication technology used in any 
part of the design: These define a particular compositional structure of an object 
and/or the addition of particular attributes to the object. 
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2. Changing any of a predefined set of analyses: Each such evaluation requires its own, 
possibly unique, set of materials or geometric properties. These must be added to the 
affected objects, by modification or specialization. Extraction and formatting 
capabilities are possibly required if the evaluation is run as an external program. 

It has been apparent for some time that information model evolution is a requirement for 
design. Design involves both the definition of an information structure and also the filling 
of that structure with values. Dynamic capabilities cannot be simply appended onto a 
model initially defined statically. Problems arise in relation to actions that modify an 
object that is specialized into many other objects, modifying the definitions of possibly 
many objects. Changes in general cause model integrity issues to rise. The implications 
of dynamic change become apparent in the formal definition of a data model, in relation 
to its axiomatic properties. These must explicitly deal with extension and modification.  

 

RELATED WORK 

Several product design representations have been proposed by both industry and 
academia. There are two international standardization efforts that address the 
representation of product designs: STEP (STandard for the Exchange of Product model 
data) being developed by the International Organization for Standardization (Burkett and 
Yang 1995); and the Industry Foundation Classes, which are specifications for a set of 
standardized object definitions, being developed by the International Alliance for 
Interoperability (Kiviniemi 1999). Both standards address later stages of design, do not 
explicitly support design evolution, and define static product representations aimed at the 
transfer of information between applications. Other product or design representations 
have been proposed in the literature such as RATAS (Bjork 1989, 1992, 1994), EDM 
(Eastman 1992), multiple views and representations (Rosenman and Gero 1996), 
principal and joint model (Dias 1996), Generic Object-Oriented Detailed Design of 
Products (GOODoB) (Biedermann and Grierson 1995) and the Building Entity Model 
(BENT) (Rivard and Fenves 2000). In addition, another approach in the research in the 
area of intelligent design systems is the approach that attempts to integrate three 
fundamental facets of an artifact representation: the physical layout of the artifact (form), 
an indication of the overall effect that the artifact creates (function), and a causal account 
of the operation of the artifact (behavior). Different models of this type have been 
developed by various researchers, including (Goel et al 1996, Gorti et al 1998, Qian and 
Gero 1996, Szykman et al 1999, Umeda and Tomiyama 1997, Iwasaki and 
Chandrasekaran 1992, and de Kleer and Brown 1983) among others. 

 

 

 



DATA MODEL 

As shown in Figures (1) and (2), the design repository model consists of a set of 
constructs that provide the basic building blocks for representing designed artifacts and is 
based on a generic container, called Design Entity, that encompasses a product design 
entity’s properties, classification, parameters, composition, relationships and geometry. 
The Design Entity object glues together the modular information of a product design 
entity and provides a single standardized interface to access information about any entity 
in the artifact. Because designers typically break down complex problems into small sub-
problems, it is natural to arrange these entities in a hierarchical manner that parallels the 
divide-and-conquer strategy. The Design Entity object could represent the entire artifact 
or a small piece of it. The decomposition client object, when attached to the Design 
Entity object or any other data object, it allows the breakdown of this object into sub-
objects and establishes the necessary containment hierarchy relationships. 

 

Common Core Object 

The main purpose for the Common Core Object is to provide common interface and 
features to all objects in the model. Among these features is to make the model dynamic 
and extensible. This achieved by allowing objects inherited from it to be dynamically 
attached together and rout ing the messages to the appropriate object among the group of 
attached objects. When a message is sent to an object inherited from Common Core 
Object and that object is not able to respond to the message, it simply forwards the 
message to the next attached object, which in turn either responds to it or forwards it to 
the next attached object. The message forwarding continues until one of the attached 
objects responds to it. To illustrate this functionality, let us examine the object 
arrangements in Figure (3). When a message is sent the Design Entity object to request a 
pointer to its Super Design Entity for example, it routes the message to the attached 
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Figure (1): Inheritance Relationship between Model Object 



Group Client object to respond to it. Since the Group Client object can not respond to this 
message, it forwards it to the attached Decomposition Client that responds to the message 
by returning the requested pointer. The routing function has a virtual interface and it  
simply calls the same function in the attached object. If the attached object can respond to 
the message, it will then execute the corresponding method, otherwise, it will forward the 
message to the next attached object, and so forth. This allows adding additional 
functionalities to any object as needed during run time by dynamically attaching a 
descendent of a Common Client Object to it. In the example shown in Figure (3), the 
Design Entity object has three client objects attached to it to add three different 
functionalities to it; the Group Client enables the Design Entity object to participate in 
various groups; the Decomposition Client object enables the Design Entity object to 
participate in a breakdown structure where Design Entity objects may have super- and 
sub- objects; The Qualitative Relationship Client object enables the Design Entity object 
to have one or more Qualitative Relationships attached to it. The client objects are only 
created and attached during run time as needed. For example, the Group Client is only 
created and attached to a descendent of the Common Data Object only if it is desired for 
the data object to participate in groups. The Common Core Object provides the common 
interface between various model objects as well as the routing functions. 

 

 

 

 

 

 

 

 

 

Common Data and Client Objects 

The Common Data Object contains data common to all objects such as the object name, 
author and id. It also provides common interface among all data objects. The decedents of 
this object are the ones that contain the product design data while the decedents of the 
Common Client Object provide added functionalities to them. Currently, three 
functionalities are available  which are; participating in groups through the Group Client 
object, ability to be broken down into a decomposition tree where each object has sub- 
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Figure (2): Relationships between Model Objects 

Classifies 

1,..* 

0,..* 1,..* 

0,..* 

1,..* 0,..* 

1,..* 0,..* 



and super-objects through the Decomposition Client and ability to have a qualitative 
relationship object through the Qualitative Relationship Client. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storing Product Design Information 

Design information are stored in a containment hierarchy of the Design Entity objects. 
The Design Entity object is generic container used to store the design information. The 
object in the root of the design entity hierarchy may represent the entire project while the 
object in the bottom of the hierarchy tree may represent the smallest entity in the project. 
An entity is something that can be distinctly identified in a building design and about 
which data are accumulated. Each design entity represents a concept meaningful to 
design participants such as a gear, a couple, or a structural frame. An entity can be a 
system, a sub-system, a constituent, a part, a feature of a part, a space, or a connection. 
All product entities are modeled with the Design Entity generic container that glues 
together the modular information of a product entity and provides a single standardized 
interface to access information about any entity in a product. 

The Design Entity object is linked to Entity Parameter Collection objects that stores the 
design parameter data in a set of parameter-value pairs. These pairs may be organized 
according to the following three approaches (Rivard and Fenves 2000): 

Figure (3): Example of Message Routing 
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1. The collection of all parameters defining an entity may be grouped into one flat 
structure. 

2. The parameters may be divided into small cohesive subsets. 
3. Each parameter may be represented as a distinct structure. 

The first and last approaches correspond to the two extremes of a scale. The first 
approach leads to the creation of exceedingly complex entities that require values that 
may not be defined at instantiation time, do not facilitate the display or exchange of a 
subset of the parameters, and are difficult to maintain, extend, and understand by a single 
specialist. Furthermore, it cannot address unexpected situations that require the addition 
of new parameters in an already instantiated object, because each attribute has to be hard-
coded in advance in the structure. In the third approach, at the other extreme, each 
attribute is stored separately. The attribute values are accessed by attribute names. This 
approach leads to complex and obscure naming conventions (e.g., preliminary_thickness, 
nominal_thickness, and actual_thickness).  

The approach selected for the presented model is located between these two extremes. 
The parameter-value pairs characterizing a product entity are organized at two 
hierarchical levels, the group level and the collection level. At the group level, data are 
grouped into three subsets, the Capacity Parameter Collection group, the Demand 
Parameter Collection group, and the Geometric Parameter Collection group. The 
Capacity Parameter Collection group defines intended purposes, requirements, and 
constraints on the entity that have to be satisfied to realize the  intended purpose. The 
Demand Parameter Collection group includes all the physical and spatial characteristics 
that define the actual design of the entity as well as the behavior of this entity under 
various conditions. In order for the design to be successful, designed demands must not 
exceed capacity (e.g., D/C ration is less than 1). This requirement is checked by the D/C 
Checker objects. The Geometric Parameter Collection group has the geometric 
parameters linked to the drafting software to ensure that the product drawings change 
automatically as geometric parameters change. While Qualitative Relationship objects 
link design entities together with domain specific relationships, the Quantitative 
Relationship objects link various parameters together to ensure the propagation of any 
parameter changes accordingly in a fashion similar to what happen in spreadsheets. Such 
a feature makes the model highly computable and various design alternatives may be 
explored easily, not to mention the ability of generating similar new designs from old 
ones by creating templates from old designs. 

At the second level of data aggregation, the parameter-value pairs of an entity are 
combined into small cohesive subsets, each of which is called a parameter collection. A 
collection is defined as a group of closely related parameters that are found together in a 
repository (access-cohesive), instantiated at the same time (time-cohesive), and that 
represent the same concept (concept-cohesive). Cohesion is the only criterion used in 
decomposing entities. It is defined as a measure that shows how closely the  parameters of 
an entity relate to one another. An example of a Parameter Collection is one that collects 
together the parameters used to describe the section properties of structural members such 
as depth, width, cross section area, and moment of inertia. Parameter collections allow 



entities to be refined in staged steps by adding sets of parameter-value pairs to the entity 
as they are generated in the design process. Hence, there is no need to predict all possible 
parameter-value pairs needed in a product entity at the outset. Parameter collections also 
allow the integration of multiple views by multiple design teams in one entity by 
including collections that are specific to each view and each design team as well as 
components that are shared among all views and all design teams (e.g., material 
properties. 

 

Classification 

A classified instance is a label assigned to a Design Entity for the purpose of classifying 
and indexing it in the knowledge base. Classifier instances are required to classify the 
generic building entities as they are being refined during the design process. Classifier 
instances are also used as indexes for querying the case library. The classifications are 
arranged together in containment hierarchy that refines the entity classification as we 
traverse down the hierarchy tree. Each tree node in the classification tree has a super 
classification, which is more generic and a sub-classification, which is more specific. In 
other words, classifiers are arranged in a subsumption hierarchy in which a narrower 
classifier is recognized to be part of a broader one. The root of every classification tree is 
a Category object, which defines a specific aspect of an object and consists of a hierarchy 
of classifiers. Each category object is linked to one or more Design Entity Type that 
declares the type of that specific design entity. Only classifications that are linked to a 
Design Entity object are possible classification objects for this Design Entity object. The 
Design Entity Types are also arranged together in a hierarchical decomposition fashion 
that describes possible types of product entities some of which may be alternatives to one 
another and others may complement each other.  

 

CONCLUSION 

The presented model has the following advantages: 

• A generic container that that encompasses a product design entity’s properties, 
classification, parameters, composition, relationships and geometry. The Design 
Entity object glues together the modular information of a product design entity and 
provides a single standardized interface to access information about any entity in the 
artifact. 

• A supporting system of classification that supports querying the knowledge base for 
the purpose of case adaptation of the entire product or a portion of it 

• The flexibility of adding and removing various client objects to the data object 
dynamically during run time to add or remove desired features from the data object as 
well as accommodate various changes 



• The ability of any data object to participate in a group that reduces the amount of data 
entry and computations for similar design entities 

• Related parameters are linked together with a quantitative relationship object to 
ensure the propagation of changes to the dependent parameters when the independent 
parameters change. Geometric objects are also linked to geometric parameters to 
ensure the automatic update of design drawings when design parameters change 
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