
Computable Dynamic Design Repository for Product Data Representation

Al Zeiny, Ph.D., P.E.∗

ABSTRACT

The product representation for storing design information presented in this paper is based
on a dynamic object-oriented data model. This model stores design data as they are
generated during design in a computable format, as well as supports case-based reasoning
and sharing of data among all design teams. This model represents each entity in the
product as a generic container that encompasses its form, function, behavior, taxonomy,
composition and relationships. Different features can be added dynamically to the
container as needed. The model integrates multiple views of various design teams,
supports design evolution and exploration, and is extensible.

INTRODUCTION

The first step necessary in solving a problem with a computer involves the development
of a representation for the problem (Simon 1996). Hence, the development of any design
environment requires the definition of a design data model, known as the design
repository. The product development process has some inherent characteristics that
impose requirements on such a model. The design of a product requires a team of
designers from numerous design disciplines, each contributing a particular body of
knowledge and expertise to the overall effort. A product is considered successful when
the contributions of the designers and their respective views are integrated into a
harmonious whole. The product design process produces design information that
naturally grows in quantity and quality as the design evolves. Thus, data that are only
outlined in the early stages of design are gradually modified, enhanced, and detailed as
the design unfolds. The product design process is also exploratory in nature. It is an
iterative process in which design alternatives are synthesized and analyzed until a
satisfactory solution emerges (Rivard and Fenves 2000). The relevant features of the
design problem manifest themselves as the design proceeds and depend on the decisions
taken. Hence, the product representation should support dynamic changes not just in
terms of values and instances, but also in terms of model structure (Eastman and
Fereshetian 1994). The product design process evolves over time with the advent of new
methods, technologies, requirements, and products. It is impractical to require a design-
information model to be fully defined before implementation. Changes need to occur as a
result of the following:

1. Selecting, changing or elaborating the material or fabrication technology used in any
part of the design: These define a particular compositional structure of an object
and/or the addition of particular attributes to the object.

∗ Assistant Professor, Department of Mechanical and Civil Engineering, University of Evansville, Indiana
47722. Email: az12@Evansville.edu

2. Changing any of a predefined set of analyses: Each such evaluation requires its own,
possibly unique, set of materials or geometric properties. These must be added to the
affected objects, by modification or specialization. Extraction and formatting
capabilities are possibly required if the evaluation is run as an external program.

It has been apparent for some time that information model evolution is a requirement for
design. Design involves both the definition of an information structure and also the filling
of that structure with values. Dynamic capabilities cannot be simply appended onto a
model initially defined statically. Problems arise in relation to actions that modify an
object that is specialized into many other objects, modifying the definitions of possibly
many objects. Changes in general cause model integrity issues to rise. The implications
of dynamic change become apparent in the formal definition of a data model, in relation
to its axiomatic properties. These must explicitly deal with extension and modification.

RELATED WORK

Several product design representations have been proposed by both industry and
academia. There are two international standardization efforts that address the
representation of product designs: STEP (STandard for the Exchange of Product model
data) being developed by the International Organization for Standardization (Burkett and
Yang 1995); and the Industry Foundation Classes, which are specifications for a set of
standardized object definitions, being developed by the International Alliance for
Interoperability (Kiviniemi 1999). Both standards address later stages of design, do not
explicitly support design evolution, and define static product representations aimed at the
transfer of information between applications. Other product or design representations
have been proposed in the literature such as RATAS (Bjork 1989, 1992, 1994), EDM
(Eastman 1992), multiple views and representations (Rosenman and Gero 1996),
principal and joint model (Dias 1996), Generic Object-Oriented Detailed Design of
Products (GOODoB) (Biedermann and Grierson 1995) and the Building Entity Model
(BENT) (Rivard and Fenves 2000). In addition, another approach in the research in the
area of intelligent design systems is the approach that attempts to integrate three
fundamental facets of an artifact representation: the physical layout of the artifact (form),
an indication of the overall effect that the artifact creates (function), and a causal account
of the operation of the artifact (behavior). Different models of this type have been
developed by various researchers, including (Goel et al 1996, Gorti et al 1998, Qian and
Gero 1996, Szykman et al 1999, Umeda and Tomiyama 1997, Iwasaki and
Chandrasekaran 1992, and de Kleer and Brown 1983) among others.

DATA MODEL

As shown in Figures (1) and (2), the design repository model consists of a set of
constructs that provide the basic building blocks for representing designed artifacts and is
based on a generic container, called Design Entity, that encompasses a product design
entity’s properties, classification, parameters, composition, relationships and geometry.
The Design Entity object glues together the modular information of a product design
entity and provides a single standardized interface to access information about any entity
in the artifact. Because designers typically break down complex problems into small sub-
problems, it is natural to arrange these entities in a hierarchical manner that parallels the
divide-and-conquer strategy. The Design Entity object could represent the entire artifact
or a small piece of it. The decomposition client object, when attached to the Design
Entity object or any other data object, it allows the breakdown of this object into sub-
objects and establishes the necessary containment hierarchy relationships.

Common Core Object

The main purpose for the Common Core Object is to provide common interface and
features to all objects in the model. Among these features is to make the model dynamic
and extensible. This achieved by allowing objects inherited from it to be dynamically
attached together and rout ing the messages to the appropriate object among the group of
attached objects. When a message is sent to an object inherited from Common Core
Object and that object is not able to respond to the message, it simply forwards the
message to the next attached object, which in turn either responds to it or forwards it to
the next attached object. The message forwarding continues until one of the attached
objects responds to it. To illustrate this functionality, let us examine the object
arrangements in Figure (3). When a message is sent the Design Entity object to request a
pointer to its Super Design Entity for example, it routes the message to the attached

Common Core
Object

Qualitative
Relationship

Common Data
Object

Decomposition
Client

Group
Clients

Qualitative
Relationship Client

Classification Design
Entity

Parameter –
Value Pair

Entity Parameter
Collection

D/C
Checker

Quantitative
Relationship

Design Entity
Type

Category Capacity Parameter
Collection

Demand Parameter
Collection

Geometric Parameter
Collection

Common Client
Object

Group Geometric
Object

Figure (1): Inheritance Relationship between Model Object

Group Client object to respond to it. Since the Group Client object can not respond to this
message, it forwards it to the attached Decomposition Client that responds to the message
by returning the requested pointer. The routing function has a virtual interface and it
simply calls the same function in the attached object. If the attached object can respond to
the message, it will then execute the corresponding method, otherwise, it will forward the
message to the next attached object, and so forth. This allows adding additional
functionalities to any object as needed during run time by dynamically attaching a
descendent of a Common Client Object to it. In the example shown in Figure (3), the
Design Entity object has three client objects attached to it to add three different
functionalities to it; the Group Client enables the Design Entity object to participate in
various groups; the Decomposition Client object enables the Design Entity object to
participate in a breakdown structure where Design Entity objects may have super- and
sub- objects; The Qualitative Relationship Client object enables the Design Entity object
to have one or more Qualitative Relationships attached to it. The client objects are only
created and attached during run time as needed. For example, the Group Client is only
created and attached to a descendent of the Common Data Object only if it is desired for
the data object to participate in groups. The Common Core Object provides the common
interface between various model objects as well as the routing functions.

Common Data and Client Objects

The Common Data Object contains data common to all objects such as the object name,
author and id. It also provides common interface among all data objects. The decedents of
this object are the ones that contain the product design data while the decedents of the
Common Client Object provide added functionalities to them. Currently, three
functionalities are available which are; participating in groups through the Group Client
object, ability to be broken down into a decomposition tree where each object has sub-

1,..* 1,..*

Common Core
Object

Qualitative
Relationship

Decomposition
Client

Group
Client

Qualitative
Relationship Client

Classification
Design
Entity

Parameter –
Value Pair

Entity Parameter
Collection

D/C
Checker

Capacity Parameter
Collection

Demand Parameter
Collection

Geometric Parameter
Collection

Attachment
Relationship

Group

0,1

1

1 1 1 1
0,..* 0,..* 0,..* 0,..*

Geometric
Object

0,..* 0,1 0,..* 0,1

Groups

Relates

Contains the Parameters of

Containment
Relationship

Quantitative
Relationship Relates Checks

Figure (2): Relationships between Model Objects

Classifies

1,..*

0,..* 1,..*

0,..*

1,..* 0,..*

1,..* 0,..*

and super-objects through the Decomposition Client and ability to have a qualitative
relationship object through the Qualitative Relationship Client.

Storing Product Design Information

Design information are stored in a containment hierarchy of the Design Entity objects.
The Design Entity object is generic container used to store the design information. The
object in the root of the design entity hierarchy may represent the entire project while the
object in the bottom of the hierarchy tree may represent the smallest entity in the project.
An entity is something that can be distinctly identified in a building design and about
which data are accumulated. Each design entity represents a concept meaningful to
design participants such as a gear, a couple, or a structural frame. An entity can be a
system, a sub-system, a constituent, a part, a feature of a part, a space, or a connection.
All product entities are modeled with the Design Entity generic container that glues
together the modular information of a product entity and provides a single standardized
interface to access information about any entity in a product.

The Design Entity object is linked to Entity Parameter Collection objects that stores the
design parameter data in a set of parameter-value pairs. These pairs may be organized
according to the following three approaches (Rivard and Fenves 2000):

Figure (3): Example of Message Routing

Design Entity

Common Data
Object

 Common
Core Object

Group Client

Common Client
Object

 Common
Core Object

Decomposition Client

Common Client
Object

 Common
Core Object

Qualitative
Relationship Client

Common Client
Object

Common

Core Object

Attachment
Relationship Pointer

Attachment
Relationship Pointer

Attachment
Relationship Pointer

A
ttachm

ent
R

elationship Pointer

Group

1
0,..*

Super
Design
Entity

1
0,..*

Sub
Design
Entity

1
0,..*

Qualitative
Relationship

1 0,..*

1. The collection of all parameters defining an entity may be grouped into one flat
structure.

2. The parameters may be divided into small cohesive subsets.
3. Each parameter may be represented as a distinct structure.

The first and last approaches correspond to the two extremes of a scale. The first
approach leads to the creation of exceedingly complex entities that require values that
may not be defined at instantiation time, do not facilitate the display or exchange of a
subset of the parameters, and are difficult to maintain, extend, and understand by a single
specialist. Furthermore, it cannot address unexpected situations that require the addition
of new parameters in an already instantiated object, because each attribute has to be hard-
coded in advance in the structure. In the third approach, at the other extreme, each
attribute is stored separately. The attribute values are accessed by attribute names. This
approach leads to complex and obscure naming conventions (e.g., preliminary_thickness,
nominal_thickness, and actual_thickness).

The approach selected for the presented model is located between these two extremes.
The parameter-value pairs characterizing a product entity are organized at two
hierarchical levels, the group level and the collection level. At the group level, data are
grouped into three subsets, the Capacity Parameter Collection group, the Demand
Parameter Collection group, and the Geometric Parameter Collection group. The
Capacity Parameter Collection group defines intended purposes, requirements, and
constraints on the entity that have to be satisfied to realize the intended purpose. The
Demand Parameter Collection group includes all the physical and spatial characteristics
that define the actual design of the entity as well as the behavior of this entity under
various conditions. In order for the design to be successful, designed demands must not
exceed capacity (e.g., D/C ration is less than 1). This requirement is checked by the D/C
Checker objects. The Geometric Parameter Collection group has the geometric
parameters linked to the drafting software to ensure that the product drawings change
automatically as geometric parameters change. While Qualitative Relationship objects
link design entities together with domain specific relationships, the Quantitative
Relationship objects link various parameters together to ensure the propagation of any
parameter changes accordingly in a fashion similar to what happen in spreadsheets. Such
a feature makes the model highly computable and various design alternatives may be
explored easily, not to mention the ability of generating similar new designs from old
ones by creating templates from old designs.

At the second level of data aggregation, the parameter-value pairs of an entity are
combined into small cohesive subsets, each of which is called a parameter collection. A
collection is defined as a group of closely related parameters that are found together in a
repository (access-cohesive), instantiated at the same time (time-cohesive), and that
represent the same concept (concept-cohesive). Cohesion is the only criterion used in
decomposing entities. It is defined as a measure that shows how closely the parameters of
an entity relate to one another. An example of a Parameter Collection is one that collects
together the parameters used to describe the section properties of structural members such
as depth, width, cross section area, and moment of inertia. Parameter collections allow

entities to be refined in staged steps by adding sets of parameter-value pairs to the entity
as they are generated in the design process. Hence, there is no need to predict all possible
parameter-value pairs needed in a product entity at the outset. Parameter collections also
allow the integration of multiple views by multiple design teams in one entity by
including collections that are specific to each view and each design team as well as
components that are shared among all views and all design teams (e.g., material
properties.

Classification

A classified instance is a label assigned to a Design Entity for the purpose of classifying
and indexing it in the knowledge base. Classifier instances are required to classify the
generic building entities as they are being refined during the design process. Classifier
instances are also used as indexes for querying the case library. The classifications are
arranged together in containment hierarchy that refines the entity classification as we
traverse down the hierarchy tree. Each tree node in the classification tree has a super
classification, which is more generic and a sub-classification, which is more specific. In
other words, classifiers are arranged in a subsumption hierarchy in which a narrower
classifier is recognized to be part of a broader one. The root of every classification tree is
a Category object, which defines a specific aspect of an object and consists of a hierarchy
of classifiers. Each category object is linked to one or more Design Entity Type that
declares the type of that specific design entity. Only classifications that are linked to a
Design Entity object are possible classification objects for this Design Entity object. The
Design Entity Types are also arranged together in a hierarchical decomposition fashion
that describes possible types of product entities some of which may be alternatives to one
another and others may complement each other.

CONCLUSION

The presented model has the following advantages:

• A generic container that that encompasses a product design entity’s properties,
classification, parameters, composition, relationships and geometry. The Design
Entity object glues together the modular information of a product design entity and
provides a single standardized interface to access information about any entity in the
artifact.

• A supporting system of classification that supports querying the knowledge base for
the purpose of case adaptation of the entire product or a portion of it

• The flexibility of adding and removing various client objects to the data object
dynamically during run time to add or remove desired features from the data object as
well as accommodate various changes

• The ability of any data object to participate in a group that reduces the amount of data
entry and computations for similar design entities

• Related parameters are linked together with a quantitative relationship object to
ensure the propagation of changes to the dependent parameters when the independent
parameters change. Geometric objects are also linked to geometric parameters to
ensure the automatic update of design drawings when design parameters change

REFERENCES

Biedermann, J. D., and Grierson, D. E. (1995). “A Generic Model for Building Design,”
Engrg. with Comp., London, 11(3), pp. 173–184.

Bjork, B. (1994). “RATAS Project—Developing an Infrastructure for Computer-
Integrated Construction,” J. Comp. in Civ. Engrg., ASCE, 8(4), pp. 401–419.

Bjork, B. (1992). “A Unified Approach for Modeling Construction Information,” Build.
and Environment, Oxford, U.K., 27(2), pp. 173–194.

Bjork, B. (1989). “Basic Structure of a Proposed Building Product Model,” Comp.-Aided
Des., Oxford, U.K., 21(2), pp. 71–78.

Burkett, W. C., and Yang, Y. (1995). “The STEP Integration Information Architecture,”
Engrg. with Comp., London, 11(3), pp. 136–144.

de Kleer, J. and Brown, J. (1983). “Assumptions and Ambiguities in Mechanistic Mental
Models,” Mental Models, D. Gentner and A. L. Stevens (Eds.), Lawrence Erlbaum
Associates, New Jersey, pp. 155-190.

Dias, W. P. S. (1996). “Multidisciplinary Product Modeling of Buildings,” J. Comp. in
Civ. Engrg., ASCE, 10(1), pp. 78–86.

Eastman, C. M., and Fereshetian, N. (1994). “Information Models for Use in Product
Design: A Comparison,” Comp.-Aided Des., Oxford, U.K., 26(7), pp. 551–572.

Eastman, C. M. (1992). “A Data Model Analysis of Modularity and Extensibility in
Building Databases,” Build. and Envir., Oxford, U.K., 27(2), pp. 135–148.

Goel, A., Gomez, A., Grue, N., Murdock, J. W., Recker, M. and Govindaraj, T. (1996).
“Explanatory Interface in Interactive Design Environments,” Artificial Intelligence in
Design ‘96, J. S. Gero (ed.), Kluwer Academic Publishers, Boston.

Gorti, S., Gupta, A., Kim, G., Sriram, R. and Wong, A. (1998). “An Object-Oriented
Representation for Product and Design Processes,” Computer-Aided Design, Vol. 30, No.
7, pp. 489-501.

Iwasaki Y. and Chandrasekaran, B. (1992). “Design Verification through Function and
Behavior-Oriented Representations: Bringing the Gap between Function and Behavior,”
Artificial Intelligence in Design ‘92, J.S. Gero (Ed.), Kluwer Academic Publishers,
Boston, pp. 597-616.

Kiviniemi, A. (1999). “IAI and IFC—State of the Art.” Proc., 8th Int. Conf. on Durability
of Build. Mat. and Components, M. A. Lacasse and D. J. Vanier, eds., Vol. 4, NRC
Research Press, Ottawa, pp. 2157– 2168.

Qian, L. and Gero, J. (1996). “Function-Behavior-Structure Paths and Their Role in
Analogy-Based Design,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, Vol. 10, No. 4, pp. 289-312.

Rivard, H. and Fenves, S. (2000). “A Representation for Conceptual Design of
Buildings”, Journal of Computing in Civil Engineering, ASCE, July, Vol. 14, No. 3, pp.
151-159.

Rosenman, M. A., and Gero, J. S. (1996). “Modelling Multiple Views of Design Objects
in a Collaborative CAD Environment.” Comp.-Aided Des., Oxford, U.K., 28(3), pp. 193–
205.

Szykman, S., Racz, J., Bochenek, C. and Sriram, R. (1999). “A Web-based System for
Design Artifact Modeling,” Design Studies.

Simon, H. A. (1996). “The Sciences of the Artificial,” 3rd Ed., MIT Press, Cambridge,
Mass.

Umeda, Y. and T. Tomiyama, “Functional Reasoning in Design,” IEEE Expert Intelligent
Systems and Their Applications, Vol. 12, No. 2, 1997, pp. 42-48.

